skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Mingchen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The concept that proteins are selected to fold into a well-defined native state has been effectively addressed within the framework of energy landscapes, underpinning the recent successes of structure prediction tools like AlphaFold. The amyloid fold, however, does not represent a unique minimum for a given single sequence. While the cross-βhydrogen-bonding pattern is common to all amyloids, other aspects of amyloid fiber structures are sensitive not only to the sequence of the aggregating peptides but also to the experimental conditions. This polymorphic nature of amyloid structures challenges structure predictions. In this paper, we use AI to explore the landscape of possible amyloid protofilament structures composed of a single stack of peptides aligned in a parallel, in-register manner. This perspective enables a practical method for predicting protofilament structures of arbitrary sequences: RibbonFold. RibbonFold is adapted from AlphaFold2, incorporating parallel in-register constraints within AlphaFold2’s template module, along with an appropriate polymorphism loss function to address the structural diversity of folds. RibbonFold outperforms AlphaFold2/3 on independent test sets, achieving a mean TM-score of 0.5. RibbonFold proves well-suited to study the polymorphic landscapes of widely studied sequences with documented polymorphisms. The resulting landscapes capture these observed polymorphisms effectively. We show that while well-known amyloid-forming sequences exhibit a limited number of plausible polymorphs on their “solubility” landscape, randomly shuffled sequences with the same composition appear to be negatively selected in terms of their relative solubility. RibbonFold is a valuable framework for structurally characterizing amyloid polymorphism landscapes. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026
  2. Proteins perform their biological functions through motion. Although high throughput prediction of the three-dimensional static structures of proteins has proved feasible using deep-learning-based methods, predicting the conformational motions remains a challenge. Purely data-driven machine learning methods encounter difficulty for addressing such motions because available laboratory data on conformational motions are still limited. In this work, we develop a method for generating protein allosteric motions by integrating physical energy landscape information into deep-learning-based methods. We show that local energetic frustration, which represents a quantification of the local features of the energy landscape governing protein allosteric dynamics, can be utilized to empower AlphaFold2 (AF2) to predict protein conformational motions. Starting from ground state static structures, this integrative method generates alternative structures as well as pathways of protein conformational motions, using a progressive enhancement of the energetic frustration features in the input multiple sequence alignment sequences. For a model protein adenylate kinase, we show that the generated conformational motions are consistent with available experimental and molecular dynamics simulation data. Applying the method to another two proteins KaiB and ribose-binding protein, which involve large-amplitude conformational changes, can also successfully generate the alternative conformations. We also show how to extract overall features of the AF2 energy landscape topography, which has been considered by many to be black box. Incorporating physical knowledge into deep-learning-based structure prediction algorithms provides a useful strategy to address the challenges of dynamic structure prediction of allosteric proteins. 
    more » « less
  3. The human estrogen receptor α (hER α ) is involved in the regulation of growth, development, and tissue homeostasis. Agonists that bind to the receptor’s ligand-binding domain (LBD) lead to recruitment of coactivators and the enhancement of gene expression. In contrast, antagonists bind to the LBD and block the binding of coactivators thus decreasing gene expressions. In this work, we carry out simulations using the AWSEM (Associative memory, Water mediated, Structure and Energy Model)-Suite force field along with the 3SPN.2C force field for DNA to predict the structure of hER α and study its dynamics when binding to DNA and coactivators. Using simulations of antagonist-bound hER α and agonist-bound hER α by themselves and also along with bound DNA and coactivators, principal component analyses and free energy landscape analyses capture the pathway of domain–domain communication for agonist-bound hER α . This communication is mediated through the hinge domains that are ordinarily intrinsically disordered. These disordered segments manipulate the hinge domains much like the strings of a marionette as they twist in different ways when antagonists or agonists are bound to the ligand-binding domain. 
    more » « less
  4. Bacteriophage T7 gp4 helicase has served as a model system for understanding mechanisms of hexameric replicative helicase translocation. The mechanistic basis of how nucleoside 5′-triphosphate hydrolysis and translocation of gp4 helicase are coupled is not fully resolved. Here, we used a thermodynamically benchmarked coarse-grained protein force field, Associative memory, Water mediated, Structure and Energy Model (AWSEM), with the single-stranded DNA (ssDNA) force field 3SPN.2C to investigate gp4 translocation. We found that the adenosine 5′-triphosphate (ATP) at the subunit interface stabilizes the subunit–subunit interaction and inhibits subunit translocation. Hydrolysis of ATP to adenosine 5′-diphosphate enables the translocation of one subunit, and new ATP binding at the new subunit interface finalizes the subunit translocation. The LoopD2 and the N-terminal primase domain provide transient protein–protein and protein–DNA interactions that facilitate the large-scale subunit movement. The simulations of gp4 helicase both validate our coarse-grained protein–ssDNA force field and elucidate the molecular basis of replicative helicase translocation. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    The phase problem in X-ray crystallography arises from the fact that only the intensities, and not the phases, of the diffracting electromagnetic waves are measured directly. Molecular replacement can often estimate the relative phases of reflections starting with those derived from a template structure, which is usually a previously solved structure of a similar protein. The key factor in the success of molecular replacement is finding a good template structure. When no good solved template exists, predicted structures based partially on templates can sometimes be used to generate models for molecular replacement, thereby extending the lower bound of structural and sequence similarity required for successful structure determination. Here, the effectiveness is examined of structures predicted by a state-of-the-art prediction algorithm, the Associative memory, Water-mediated, Structure and Energy Model Suite ( AWSEM-Suite ), which has been shown to perform well in predicting protein structures in CASP13 when there is no significant sequence similarity to a solved protein or only very low sequence similarity to known templates. The performance of AWSEM-Suite structures in molecular replacement is discussed and the results show that AWSEM-Suite performs well in providing useful phase information, often performing better than I-TASSER-MR and the previous algorithm AWSEM-Template . 
    more » « less
  7. Filaments made up of different isoforms of tau protein are associated with a variety of neurodegenerative diseases. Filaments made up of the 4R-tau isoform, which has four repeat regions (R1 to R4), are found in patients suffering from Alzheimer’s disease, while filaments made of the 3R-tau isoform, which contains only three repeat units (R1, R3, and R4), are found in patients with Pick’s disease (frontotemporal dementia). In this work, a predictive coarse-grained protein force field, the associative memory water-mediated structure and energy model (AWSEM), is used to study the energy landscapes of nucleation of the two different fibrils derived from patients with Pick’s and Alzheimer’s diseases. The landscapes for nucleating both fibril types contain amorphous oligomers leading to branched structures as well as prefibrillar oligomers. These two classes of oligomers differ in their structural details: The prefibrillar oligomers have more parallel in-register β-strands, which ultimately lead to amyloid fibrils, while the amorphous oligomers are characterized by a near random β-strand stacking, leading to a distinct amorphous phase. The landscape topography suggests that there must be significant structural reordering, or “backtracking,” to transit from the amorphous aggregation channel to the fibrillization channel. Statistical mechanical perturbation theory allows us to evaluate the effects of changing concentration on the aggregation free-energy landscapes and to predict the effects of phosphorylation, which is known to facilitate the aggregation of tau repeats. 
    more » « less